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Research background (I) R

m Necessity of vehicle speed prediction

= Predicted speed based powertrain control strategies
— Reduction of fuel consumption : energy management of Hybrid Electric Vehicles (HEVs)"
— Improvement of drivability: optimal gear shift strategies?®

0 Predicted speed profile 0 Powertrain control
- Energy management of the HEVs
—— Predicted speed
g_ - T ] —— Measured speed
.‘i_; i Electric i
} § ICE ' machine! Regeneration : -
| Prediction of deceleration Time
- Gear shift strategy
— Predictive control
Y Rule-based control
2
Time

1) C.Sun, X. Hu, S. J. Moura, and F. Sun, “Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 1197-1204, 2015.
2) B. Wolfram and S. Thomas, “Anticipatory drivetrain management,” ATZ, vol. 116, no. 01, pp. 30-33, 2014.
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Research background (II) Master Mesia

m Challenges of vehicle speed prediction

= Modeling of uncertain human reaction to arbitrary driving environment
— Traffic condition, curve, speed limit, speed bump, road width, movement of vehicle ahead, etc.

Arbitrary driving environment

Speed [km/h]

Uncertain human reaction

Distance [m]
| >
I I I I i

NCE Lab

control hub"‘ 4

HANYANG UNIVERSITY

Copyright @ ACE Lab, All rights reserved



Previous studies Vaetore these

m Category of research on vehicle speed prediction

= TR, Traffic density [vehicles/km]

ik Macroscopiq' --------
=SS Traffic flow [vehicles/hour]

iction

Limitations of previous research in microscopic and non-parametric approaches

O Specific conditions such as car-following

O Insufficient inputs to reflect various driving environments

* E. I. Vlahogianni, J. C. Golias, and M. G. Karlaftis, “Short-term traffic forecasting: Overview of objectives and methods,” Transp. Rev., vol. 24, no. 5, pp. 533-557, 2004.
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Research objective i S

m Design of the ego-vehicle speed prediction model using long short-term memory (LSTM)
based recurrent neural networks (RNNs)

= Microscopic and non-parametric approach

= Improvement of prediction accuracy on real urban roads by using various inputs
— Internal vehicle information, relative distance and speed, location of the ego-vehicle
= Implementation of the proposed model in the embedded system

4 N\

g ) e N
Driving information LSTM based RNN model Vehicle speed prediction
( Internal vehicle sensors ) e ~ mmmm  Measured
- TEEeEs Proposed model g s Prodiction
G =% | -
- Y, -8 *\*
(]
- a &
Relative distance and speed 15t LSTM layer g
} £
— — (]
) | O Input 2"d | STM layer Output| = Time [s]
L ) !
( Location of the ego-vehicle ) FC layer Driving route / o
y s
& 5 T 4\ 0
n ) _ Y, o o 0
\ ~ - y N J . J
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Master’s thesis

Methodology
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Long short-term memory based recurrent neural networks

Master’s thesis

m LSTM based RNNs*

= Strong prediction performance for sequential data due to feedback loop in RNNs
— Temporal correlations in determination of the vehicle speed

= Effective conveyance of previous information of the inputs
— Using cell states

( N\ )
Unfolded LSTM based RNNs Structure of LSTM cell h,
Yt Yt-T Yt
Ce
he—1 hy_4
LSTM D = LSTM °ee LSTM
hy
Xt Xt-T Xt
\§ J \_ J

i,: input gate, f,: forget gate,o,:output gate, h,: hidden state, C,: cell state, C,: candiate cell state, o: activation function, W:weight, b: bias, x: input state

*S. Hochreiter and J. Urgen Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
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Vehicle speed prediction model

Master’s thesis

I Measured

@ Model specification
» Model structure t Prediction horizon: 15s
BN Prediction - »

— 2 LSTM layers + a fully connected layer i /g(__*
» Prediction horizon . Inputs: 30s : §

1 Sampling time: 1s

» Prediction every second ' L : L

Time [s]

~ T,y 15 seconds

» Length of input states
- T;: 30 seconds

Vehicle speed [km/h]

LSTM — LSTM o Ml R 0

— = g YE+1) y(E+2)  y(E+ Tou)
x(t—Tp) x(t-1)  x(t) ! } 5 . ou
— ] o 9
1. Average speed of 4 wheels LSTM LSTM -g _%'
2. Acceleration Q =
3. Engine speed E (%
4. Master cylinder pressure LSTM — LSTM o 5 [ :
x(t) 5. Accel pedal position l : o y(t) Vehicle speed
6. Relative distance from the vehicle ahead l =
7. Relative speed from the vehicle ahead LSTM — LSTM L.
| 8. Ego-vehicle location in the driving route
230 310
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Data acquisition environment

Master’s thesis

m Modeling data
= Training dataset: 34 cycles
= Validation dataset: 6 cycles
= Test dataset: 6 cycles

-
Vehicle set-up: Kia Sorrento

Wheel speed sensors

=  RTK-GPS

S

Gyro sensor
Engine speed sensor
Master cylinder pressure sensor

Accel pedal position sensor

Vector VN 1640

-

Logging-PC

ACELab
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100

Speed profiles
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Master’s thesis

Results and analysis
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Processor in-the loop simulation (PILS)

Master’s thesis

m Verification of real-time performance

= Integration to embedded system

> Nvidia Jetson TX2
— GPU: 256 CUDA cores @ 1300MHz

PILS environment

Trained
model

NCE Lab

control hub
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Ego-vehicle speed prediction
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Prediction results

Master’s thesis

m Evaluation of the proposed model along the prediction horizon

- Example of the prediction result: test cycle 2
i ! 1 ] :

H R e : Measured speed
. A\ e an =R, =5 : Predicted speed
__ 8D g e— — RN 7 £ SR s T b T ]
= e A i, e | \ :
\ # ; o
g Sy \\_// \\ _,_,"'f\"-_\ Y SR
g 40 \ /.-ﬂ ' \ // —
o AR \ o
20 -
0 i | i i |
100 150 200 250 300
Time [s]
60 = Siverags Test 1 0.917 4572
- sl { Standard deviation d ' '
—50 | — Test 2 0.918 4.030
= Es . -
§‘40 Measured speed £6 }{,}J}*“ Test 3 0.894 5.820
o | L P & ; T Test 4 0.885 4.725
® —#—Predicted speed o] D g ,} AAAAAAAAAAAAAAAAAAAAAAA TN
g3} * = i’i g Test 5 0.895 5.334
. g 2 3% : Test 6 0.875 5.660
20 ....................................................... 'X'.?'("” ..........
- 0 : Average 0.897 5.023
35 40 45 50 55 60 0 5 10 15
Time [s] Frediction horizon [s]
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Curvilinear coordinate conversion (II)

Master’s thesis

@ Calculation of the closest point using a numerical technique that combines quadratic
minimization and Newton’s method

» Prevents divergence of the optimization and improves the rate of convergence for real-time
implementation

» Quadratic Minimization
— Splk]

_ 1 Dby3D(s1)+b31D(52)+b12D(S3)
2 by3D(s1)+b31D(52)+b12D(s3)’
Ay

where

D(s) = (x,(5) = %) >+ (¥ (8) = ¥p)°
aijzsi—sjandbij=sl~2—s-2 g R S

]
» Newton’s method

D' (s;.
— sl =gk — ,,( ’i) , k=12, ..
D" (sg) n

k=1,2,..

X () = ax(s = 5)° + by(s = 5)* + (s —5p) + dx
Vr(s) = ay(s —s)® +by(s —s5)? +c,(s —5p) + d,,
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Master’s thesis

Conclusion
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COnC| u Slon Master’s thesis

m In order to reduce fuel consumption and improve drivability of a vehicle, vehicle speed
prediction can be applied in the powertrain control strategies

m An ego-vehicle speed prediction model using LSTM based RNNs was proposed to improve
the prediction performance in various driving conditions

= The proposed model uses several model inputs
— Internal vehicle sensors, a radar sensor, and the location information of the ego-vehicle

m The proposed model was validated by real-driving data from a vehicle equipped with the
radar and RTK-GPS
= The RMSE of test data was 5.023 km/h
= The maximum calculation time was 0.073 seconds in the embedded system
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Thank you
for your attention!
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Example of HEVs application .

m Model predictive control in HEVs
= Minimize the fuel consumption and deviation of SOC

. Environment
OverV|eW . Road grade
. Road curves
= Predictive powertrain «  Traffic restrictions
control * Lane width

Vehicle and driver T
Velocity Estimation of Optimization

o ,
Acceleration ‘P/ Prediction RLRULGE L EA()) algorithm
o . -
\‘ algorithm ty<t<ty+T

Plant model

Best control
action u(ty)

Plant states x(t;)

t+T

Minimize: | = hedt + B[SOC(t + k) — SOC(¢
inimize: | = a t my pISoC( ) ©] u = [P, gear position]

mg: fuel consumption, SOC: state of charge, T:prediction horizon

*C. Sun, X. Hu, S. J. Moura, and F. Sun, “Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 1197-1204, 2015.
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Previous studies B

m Category of vehicle speed prediction research 3
= Scope |

— Mac:roscopic: forecasts traffic variables such as traffic density [vehicles/km]
— Micr:bscopic: forecasts individual vehicle speed in specific condition such as car-following

= Methodology
— Paraimetric approaches: predicts a vehicle speed with a predetermined model structure
— Non;*parametric approaches: predicts a vehicle speed with a not pre-defined model structure

----------- Traffic density [vehicles/km]

fmmm Macroscopic

|
!
!
E
1
[} 1
_§ A Scope e EEEERTEESEEEEE Traffic flow [vehicles/hour]
o | |
o° | |
% i e Microscopic @ [--—-------- Individual vehicle speed in specific conditions
o L
3 [
o I T EED Constant Speed (CS) model
% REERRERE Parametric
E I Methodology T e Constant Acceleration (CA) model
ommmmees Non-parametric  [---------- Neural networks

3) E.I. Vlahogianni, J. C. Golias, and M. G. Karlaftis, “Short-term traffic forecasting: Overview of objectives and methods,” Transp. Rev., vol. 24, no. 5, pp. 533-557, 2004.
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Hyperparameter Optimization via RBF and Dynamic coordinate search

@ Find best hyperparameter set which can minimize the loss in validation data set
» Objective: I_rlrelkrll)(f(l‘l))

» Sampled points: A, = {(Hi»fi(Hi))}?:l

» Surrogate model: S,,(H) =

n
=1

Ai¢(l H = H; 1) + p(H)

Surrogate model with sampled points

ex) A: = (Hy, f(H1)) : S,
o oA,
o ®
+ Noise
Hbest @ o
>

ANCE Lab

a¥s
o
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Hyperparameter, H

20

Sampling initial hyperparameters, A,,

A

1. Fit the surrogate model S,, with 4,

Y

2. Set Hy,,; = argmin{f(H;)}in 4,

A

3. Candidate hyperparameter set (Q1,,) are generated by
adding noise (5,,) t0 Hy, .+

Y

4. Choose the most promising hyperparameter (H*) in
the candidate hyperparameters

A

5. Update A,.,; = {4, U (H*,f(H"))}

N < Npax

Return Hy,;

HANYANG UNIVERSITY
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Model training

Master’s thesis

m Model structure optimization

= Hyperparameter Optimization via Radial basis function and Dynamic coordinate search (HORD)*
— Search of the best hidden states number for the 1-LSTM layer and 2-LSTM layer

75 40
< * Trial 1 —Training
g -l . | & Trial 2|, 35 - --Validation
Ll ¥ | Trial 3
%) E.30 i
E 6.5 . A =
© a X 25
E + ' " + Lu
© o6, + g * . 220
2 Ao <4 & A.. ¥ & a .t A-'AAAA a & o
= 8, o R , a&" g A+ ot 8 o 151
D55 ! A 5 " u++ rd e & @ * B (7))
E I‘d““, A%"A ‘A*“?MA * - ad “..AA“ o 1-5‘:-“: ‘1" A 3 10‘
“6 5 "1 r‘ e‘A‘— o MA a ‘éMz + AA’ * 5(& B - 1:.' A#e ]
9 PR %~ T SN SRS S S My .o Trial 2, 77 51
o B
—

45 i 0 I 1 | |

0 20 40 60 80 100 0 200 400 600 800 1000
HORD iteration number Training step
m Training data | Validation data
30 218 125 4.849 RMSE
Trial 2 77 230 310 4.753 4.993 4.753
[km/h]
76 270 270 4.796

*I. llievski, T. Akhtar, J. Feng, and C. A. Shoemaker, “Efficient Hyperparameter Optimization of Deep Learning Algorithms Using Deterministic RBF Surrogates,” 2016.
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Comparison with previous studies

Master’s thesis

m Model of previous studies
= Constant speed (CS) model
= Constant acceleration (CA) model
= Artificial neural network (2 MLP layers optimized with HORD algorithm)

30 T . :
o5t | CS ]
"""" CA P
— 20 ~+ANN ................................... ’// ................................ 4
E ——Proposed model
15 # |
0
=
10}
——ANN ‘\\ or
——Proposed model N,
0 I Xoeeply ] 0 I L
0 o) 10 15 0 o) 10 15
Prediction horizon [sec] Prediction horizon [sec]
ACE Lab 2 HANYANG UNIVERSITY
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Effect of the input combinations on the prediction performance

@ Group of inputs
» Group1: v(t), a(t), w(t), pp(t), pa(t)
» Group2: r;(t),7,(t)
» Group3: s(t)

B Scenarios
» Scenario |: Car-following
» Scenario II: On the sharp curve
» Scenario lll: Full path

B Prediction result (RMSE [km/h])

5.802 9.497

G1+G2 5.394 7.505
G1+G3 5.703 6.168
G1+G2+G3 4.843 6.923

6.183
5.546
5.416
5.023

Master’s thesis

Scenario | Scenario ll

o
(9]
RN
o

(o))

RMSE [km/h]
a
a

a

v
o

el
3

(o))

RMSE [km/h]
a
a

9]

.
o

G1 G1+G2 G1+G3 G1+G2+G3
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Effect of prediction horizon

Master’s thesis

m HEVs application

= J. Lian et al., “A mixed logical dynamical-model predictive control (MLD-MPC) energy management control
strategy for plug-in hybrid electric vehicles (PHEVs),” Energies, vol. 10, no. 1, 2017.

= A. Rezaei and J. B. Burl, “Effects of time horizon on Model Predictive Control for Hybrid Electric Vehicles,”
IFAC-PapersOnLine, vol. 28, no. 15, pp. 252-256, 2015.

m Cooperative adaptive cruise control

= D. Lang, R. Schmied, and L. Del Re, “Prediction of Preceding Driver Behavior for Fuel Efficient Cooperative
Adaptive Cruise Control,” SAE Int. J. Engines, vol. 7, no. 1, pp. 2014-01-0298, 2014.

City
Table 2. Comparison of potential consumption reduction.
27 ’
’é 26.64 26.52 26.46 - prediction horizon
. é 26 5 % margin applied scenario 10s 15s 20s 25s
Q0 O i >
5 S perfect pred. 8.2% 8.5% 8.5% 8.6%
Y= o
= = 26 25.89 25.87 25.88 25.86 D 10m Scenario 1 6.9% | 71% | 71% | 6.9%
@
m© g = Scenario 2 55% | 57% | 56% | 53%
o =)
g *5_ 25 5 % H 1 perfect pred. 12.5% | 14.3% 15% 15.1%
g. = 8 MOde;l Predictive 9°ntr°| 20m Scenario 1 86% | 11.1% | 11.3% | 10.5%
- 3 25 Q g5t & booeoeeeeenneno bonnnooooooeeeeend Scenario 2 48% | 72% | 8% | 6.8%
c = 2 Instantaneous - = : -
8 1 5 10 15 20 25 30 0 <—optimal control perfect pred. 15.3% | 19.4% | 19.5% | 19.8%
& A i i 30m Scenario 1 10.1% | 14.5% | 13.7% | 13.1%
> 60
Prediction Horizon(s) 0 100 200 300 ;
: : : Scenario 2 7% 11.5% | 11.8% | 10.4%
Length of Predicted Time Horizon [s]

HEVs application [1] HEVs application [2] ACC application
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Recurrent Neural Networks
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Standard RNN structure (I) .

m Difference with the standard neural networks
= Using previous information when determining the current state

are

h)
I
A

® ®
] i
A L' A
;e

Clouds are

&> —@

<> hL

@—>—@

)
|
A

6

Standard neural network Recurrent neural network

sky
A
the
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Standard RNN structure (II) .

m Structure of standard RNN cell: tanh layer

Ot
b

- T\ s A\ s T\
L T ht = tanh(Ux; + Why_1) N R N
W -
A o, = softmax(Vh,) A ta;h A
U W Higden weights marri \ J J J
V:output weights matrix XI@ O é
Xt

ACELab 27 HANYANG UNIVERSITY
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Standard RNN structure (III) .

m Vanishing gradient problem

= Standard RNN model easily forgets memory from long time ago because of backpropagation
> One of the solutions prevents the vanishing gradient problem is LSTM

grew up in France

!

French

| speak fluent

7
A

A >

v

>
L

v
v

® ©

AR S A8
S G

I grew up in France | speak fluent
E, Ey E, E3
R B | IS
S 09 o5 PR C cf) From backpropagation theory: w; = w; + ndx;
ho R hy L ha _ hs ' & /XX
tanh | tanh | tanh tanh B - . o3 _ 0E3 S8hs O6h, &6hy
? /,/ Errorterm : 65 = 5h.  5h, " 5h. " She
-0.5 o
’f‘ ~
e -1—3 “““";W/i 0 1 2 3 0.9 . 0'8 . 0'2 ~0
hy = tanh(Ux; + Whe_,)
NCE Lab HANYANG UNIVERSITY
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Long short term memory networks (I) .

m The core idea behind LSTM (Long Short Term Memory network)
= To relieve the vanishing gradient problem, LSTM uses cell state and gate(sigmoid function)
= Cell state is a conveyor belt carrying information.

= Gates(sigmoid function) determine to remove or add information to the cell state
— Output of sigmoid function is from 0 to 1. It is used as gate (0: let nothing through, 1: let everything through)

Standard A
RNNs _®_
| (D .
b e W 4T
0 1
I : : :
LSTM { A Cell state Sigmoid function (o)
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Long short term memory networks (II)

@ LSTM process
» Forget gate(f;) decides whether to keep old cell state(C;_4) or not
» Input gate(i,) determines how much candidate cell state(C;) is added to new cell state(C,)
» Output gate(o,) is multiplied by the cell state, allowing us to get output as we want

Master’s thesis

I h,*
Cy_ Ct Cia C;
| 1%
Oold New ED
cell f| @ A c;‘e:I I filosfr<1 0<0, <1 o Py(x)
state Candidate Pt - 0] By
cell state I
Tt Ty [
Cell state | Forget gate Output gate

C, =+ Cexlt o<fio <1 hy = o, * tanh(Cy)

Ci_41:0ld cell state

C,: Candidate cell state

Ci:New cell state
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B-spline roadway model

Master’s thesis

m Design the roadway model by using the B-spline*

» Gradual correction
— Repeated steps for B-spline creation and error correction

400 400 T T T 400
¢ 3 Road Modeling Road Modeling
: : *  Raw Data : : : *  Raw Data
300 300}---==---= T ) L s" W Foerrrrar = 70| SETTSR 77 IO T P B
£ ] ! ! ] ] ] : !
200 P S . ¥ S - 200{--------- 1 ¥ .
Knot ' ' ' ! ] ! ) ] ! ]
p|acement 100 %Y i pemmmmnann e G e P n LY fiomooennans e e oo 7
: . I e B e .
| VOSSN NN .G S T [t O O . O S S
B'Sp“ne ! ] ] ' *x ; i
approximation 200 i i i i i 200 i i i i i 200 i i i I i
-300 200 -100 0 100 200 300 -300 200 -100 0 100 200 300 300 200 -100 0 100 200 300
<lIteration <lIteration <Iteration
> > >
Updati 400 f1 400, 11 400 r21 T T
p a Ing : Road Modeling ' : Road Modeling
principal : : : i ; : Raw Data { : ] * RawData
ELY iy gl Sy Rt G e —— b LY i S presmmas prevEm—— > it Sl b EY e ks Sk R C b
parameter : : ; : ‘ - - ; ; - ; :
R ™" e . . ¥ W
PR HOURO N S SO 0 J N AR SO SIS S 0 U RN ESR SN NS NS S -
R e T e . - e I S e e N
O S O SO . 6 SRS S B NS SO SO . 5 S SN o IS S S W Y5 SO S
Ye 200 1 i i i i 200 i i 1 ; i 200 i i i | i
300 200 100 0 100 200 300 -300 200 -100 0 100 200 300 300 200 -100 0 100 200 300
<lteration <lteration <lteration

* K. Jo and M. Sunwoo, “Generation of a Precise R%1a>dwa Map for Autonomous Cars,” IﬁfE Trans. Intell. Transp. Syst., vol. 15, rIFb1>3 . 1-13, 2013.
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Ego-vehicle location on the route

Master’s thesis

@ Curvilinear coordinate system*

» Quadratic minimization
— Initial guess of the P, by minimizing the distance between P, and P,

» Newton’s method

— Finding the final solution P,: (x; y:), Cartesian

- (s¢, ), Curvilinear

y A

st (X0, Y0), Cartesian
— (5S¢, Ng), Curvilinear

>
X

\—B-spline road model

*J. Kim, K. Jo, W. Lim, M. Lee, and M. Sunwoo, “Curvilinear-coordinate-based object and situation assessment for highly automated vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3, pp. 1559-1575, 2015
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Master’s thesis
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