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■ Necessity of vehicle speed prediction
► Predicted speed based powertrain control strategies

– Reduction of fuel consumption : energy management of Hybrid Electric Vehicles (HEVs)1) 
– Improvement of drivability: optimal gear shift strategies2)

Research background (I)
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1) C. Sun, X. Hu, S. J. Moura, and F. Sun, “Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 1197–1204, 2015.
2)    B. Wolfram and S. Thomas, “Anticipatory drivetrain management,” ATZ, vol. 116, no. 01, pp. 30–33, 2014.
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■ Challenges of vehicle speed prediction 
► Modeling of uncertain human reaction to arbitrary driving environment

– Traffic condition, curve, speed limit, speed bump, road width, movement of vehicle ahead, etc.

Research background (II)
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■ Category of research on vehicle speed prediction* 

■ Requirement for effective powertrain control strategies
► Accurate speed prediction of each vehicle on real urban roads 

– Microscopic and non-parametric approaches

Previous studies

*  E. I. Vlahogianni, J. C. Golias, and M. G. Karlaftis, “Short‐term traffic forecasting: Overview of objectives and methods,” Transp. Rev., vol. 24, no. 5, pp. 533–557, 2004.
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Methodology

Macroscopic
Traffic density [vehicles/km]

Traffic flow [vehicles/hour]

Microscopic Individual vehicle speed [km/h]

Parametric
Constant Speed (CS) model

Constant Acceleration (CA) model

Neural networksNon-parametric

Effective platform for complex non-linear problem

Microscopic Individual vehicle speed [km/h]

Neural networksNon-parametric

Limitations of previous research in microscopic and non-parametric approaches
❑ Specific conditions such as car-following

❑ Insufficient inputs to reflect various driving environments
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■ Design of the ego-vehicle speed prediction model using long short-term memory (LSTM) 
based recurrent neural networks (RNNs)
► Microscopic and non-parametric approach 
► Improvement of prediction accuracy on real urban roads by using various inputs

– Internal vehicle information, relative distance and speed, location of the ego-vehicle
► Implementation of the proposed model in the embedded system

Research objective

Driving route

Vehicle speed prediction
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■ LSTM based RNNs*
► Strong prediction performance for sequential data due to feedback loop in RNNs

– Temporal correlations in determination of the vehicle speed
► Effective conveyance of previous information of the inputs

– Using cell states

Long short-term memory based recurrent neural networks

 
*S. Hochreiter and J. Urgen Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.
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■  

Vehicle speed prediction model
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1. Average speed of 4 wheels
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4. Master cylinder pressure
5. Accel pedal position
6. Relative distance from the vehicle ahead
7. Relative speed from the vehicle ahead
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■ Modeling data
► Training dataset: 34 cycles
► Validation dataset: 6 cycles
► Test dataset: 6 cycles

Data acquisition environment

RTK-GPS

Radar

CAN network

Logging-PC

Wheel speed sensors
Gyro sensor
Engine speed sensor
Master cylinder pressure sensor
Accel pedal position sensor

Vector VN 1640

Vehicle set-up: Kia Sorrento

Urban road
Narrow one-way

Start point

End point

Sharp curve

0 km

3.7 km

5.1 km

C
ur

ve

C
ur

ve

Driving route

Speed profiles

60

Speed limit

Olympic express way



 11 
Copyright @ ACE Lab, All rights reserved

Master’s thesis

Results and analysis



 12 
Copyright @ ACE Lab, All rights reserved

Master’s thesis

■ Verification of real-time performance
► Integration to embedded system
► Nvidia Jetson TX2

– GPU: 256 CUDA cores @ 1300MHz

Processor in-the loop simulation (PILS)

Trained 
model

CAN transceiver

Replay driving data

PILS environment
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■ Evaluation of the proposed model along the prediction horizon

Prediction results

Index RMSE [km/h]

Test 1 0.917 4.572

Test 2 0.918 4.030

Test 3 0.894 5.820

Test 4 0.885 4.725

Test 5 0.895 5.334

Test 6 0.875 5.660

Average 0.897 5.023

Prediction horizonDetail view

Example of the prediction result: test cycle 2
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■  

Curvilinear coordinate conversion (II)

 

 

 

 

 

 

 

 



 15 
Copyright @ ACE Lab, All rights reserved

Master’s thesis

Conclusion
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■ In order to reduce fuel consumption and improve drivability of a vehicle, vehicle speed 
prediction can be applied in the powertrain control strategies

■ An ego-vehicle speed prediction model using LSTM based RNNs was proposed to improve 
the prediction performance in various driving conditions
► The proposed model uses several model inputs

– Internal vehicle sensors, a radar sensor, and the location information of the ego-vehicle

■ The proposed model was validated by real-driving data from a vehicle equipped with the 
radar and RTK-GPS
► The RMSE of test data was 5.023 km/h
► The maximum calculation time was 0.073 seconds in the embedded system

Conclusion
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Thank you
for your attention!
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■ Model predictive control in HEVs
► Minimize the fuel consumption and deviation of SOC

Example of HEVs application

Environment
• Road grade
• Road curves
• Traffic restrictions
• Lane width
• …

 

 

Vehicle and driver
• Velocity
• Acceleration
• …

Overview
    - Predictive powertrain 
control

 

 
Prediction 
algorithm

Optimization
algorithm

Plant model

  

 

 
 

*C. Sun, X. Hu, S. J. Moura, and F. Sun, “Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 1197–1204, 2015.
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■ Category of vehicle speed prediction research 3) 
► Scope

– Macroscopic: forecasts traffic variables such as traffic density [vehicles/km]
– Microscopic: forecasts individual vehicle speed in specific condition such as car-following

► Methodology
– Parametric approaches: predicts a vehicle speed with a predetermined model structure
– Non-parametric approaches: predicts a vehicle speed with a not pre-defined model structure

Previous studies

3)   E. I. Vlahogianni, J. C. Golias, and M. G. Karlaftis, “Short‐term traffic forecasting: Overview of objectives and methods,” Transp. Rev., vol. 24, no. 5, pp. 533–557, 2004.
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Macroscopic
Traffic density [vehicles/km]

Traffic flow [vehicles/hour]

Microscopic Individual vehicle speed in specific conditions
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Constant Speed (CS) model
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■  

Hyperparameter Optimization via RBF and Dynamic coordinate search
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■ Model structure optimization
► Hyperparameter Optimization via Radial basis function and Dynamic coordinate search (HORD)*

– Search of the best hidden states number for the 1-LSTM layer and 2-LSTM layer

Model training

*I. Ilievski, T. Akhtar, J. Feng, and C. A. Shoemaker, “Efficient Hyperparameter Optimization of Deep Learning Algorithms Using Deterministic RBF Surrogates,” 2016.

Index Best iteration 
number H1 H2 RMSE [km/h]

Trial 1 30 218 125 4.849

Trial 2 77 230 310 4.753

Trial 3 76 270 270 4.796

Index Training data Validation data
RMSE 
[km/h] 4.993 4.753

Trial 2, 77



 22 
Copyright @ ACE Lab, All rights reserved

Master’s thesis

■ Model of previous studies
► Constant speed (CS) model
► Constant acceleration (CA) model
► Artificial neural network (2 MLP layers optimized with HORD algorithm)

Comparison with previous studies
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■  

Effect of the input combinations on the prediction performance

Inputs Scenario I Scenario II Scenario III

G1 5.802 9.497 6.183

G1+G2 5.394 7.505 5.546

G1+G3 5.703 6.168 5.416

G1+G2+G3 4.843 6.923 5.023
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■ HEVs application
► J. Lian et al., “A mixed logical dynamical-model predictive control (MLD-MPC) energy management control 

strategy for plug-in hybrid electric vehicles (PHEVs),” Energies, vol. 10, no. 1, 2017.
► A. Rezaei and J. B. Burl, “Effects of time horizon on Model Predictive Control for Hybrid Electric Vehicles,” 

IFAC-PapersOnLine, vol. 28, no. 15, pp. 252–256, 2015.
■ Cooperative adaptive cruise control

► D. Lang, R. Schmied, and L. Del Re, “Prediction of Preceding Driver Behavior for Fuel Efficient Cooperative 
Adaptive Cruise Control,” SAE Int. J. Engines, vol. 7, no. 1, pp. 2014-01–0298, 2014.

Effect of prediction horizon 

HEVs application [1] HEVs application [2] ACC application
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Recurrent Neural Networks
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■ Difference with the standard neural networks
► Using previous information when determining the current state

Standard RNN structure (I)
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■ Structure of standard RNN cell: tanh layer

Standard RNN structure (II)

tanh
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■ Vanishing gradient problem
► Standard RNN model easily forgets memory from long time ago because of backpropagation
► One of the solutions prevents the vanishing gradient problem is LSTM

Standard RNN structure (III)
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■ The core idea behind LSTM (Long Short Term Memory network)
► To relieve the vanishing gradient problem, LSTM uses cell state and gate(sigmoid function)
► Cell state is a conveyor belt carrying information. 
► Gates(sigmoid function) determine to remove or add information to the cell state

– Output of sigmoid function is from 0 to 1. It is used as gate (0: let nothing through, 1: let everything through)

Long short term memory networks (I)

Standard
RNNs

LSTM
Cell state

0 1
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■  

Long short term memory networks (II)

Forget gate
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■ Design the roadway model by using the B-spline*
► Gradual correction

– Repeated steps for B-spline creation and error correction 

B-spline roadway model

<Iteration 
1>

<Iteration 
11>

<Iteration 
21>

<Iteration 
31>

<Iteration 
41>

<Iteration 
51>

Knot 
placement

B-Spline 
approximation

Updating 
principal 

parameter

Error check

No
Yes

Knot 
placement

B-Spline 
approximation

Updating 
principal 

parameter

Error check

No
Yes

* K. Jo and M. Sunwoo, “Generation of a Precise Roadway Map for Autonomous Cars,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 3, pp. 1–13, 2013.
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■  

Ego-vehicle location on the route

 

 

 

 
 

B-spline road model

 
 

 

quadratic minimization 을 통해 optimal solution 을 찾지만 
평균속도가 뉴튼방법보다 낮다. 그래서 광역적으로 먼저 
quadratic method를 통해

* J. Kim, K. Jo, W. Lim, M. Lee, and M. Sunwoo, “Curvilinear-coordinate-based object and situation assessment for highly automated vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3, pp. 1559–1575, 2015.
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