Ego-vehicle speed prediction using long short-term memory based recurrent neural networks

Kyuhwan Yeon

Advising professor: Myoungho Sunwoo

Department of Automotive Electronics & Control Engineering

Contents

Introduction

- Research background
- Research objective

Methodology

Vehicle speed prediction model

Results and analysis

Prediction results

Conclusion

Research background (I)

Necessity of vehicle speed prediction

- Predicted speed based powertrain control strategies
 - Reduction of fuel consumption : energy management of Hybrid Electric Vehicles (HEVs)¹⁾
 - Improvement of drivability: optimal gear shift strategies²⁾

C. Sun, X. Hu, S. J. Moura, and F. Sun, "Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles," *IEEE Trans. Control Syst. Technol.*, vol. 23, no. 3, pp. 1197–1204, 2015.
B. Wolfram and S. Thomas, "Anticipatory drivetrain management," *ATZ*, vol. 116, no. 01, pp. 30–33, 2014.

HANYAN

Copyright @ ACE Lab, All rights reserved

Research background (II)

Challenges of vehicle speed prediction

- Modeling of uncertain human reaction to arbitrary driving environment
 - Traffic condition, curve, speed limit, speed bump, road width, movement of vehicle ahead, etc.

4

Category of research on vehicle speed prediction^{*}

Limitations of previous research in microscopic and non-parametric approaches

- Specific conditions such as car-following
- □ Insufficient inputs to reflect various driving environments

Constant Acceleration (CA) model

Neural networks

Effective platform for complex non-linear problem

* E. I. Vlahogianni, J. C. Golias, and M. G. Karlaftis, "Short-term traffic forecasting: Overview of objectives and methods," Transp. Rev., vol. 24, no. 5, pp. 533–557, 2004.

Research objective

ACE Lab

control hub

- Design of the ego-vehicle speed prediction model using long short-term memory (LSTM) based recurrent neural networks (RNNs)
 - Microscopic and non-parametric approach
 - Improvement of prediction accuracy on real urban roads by using various inputs
 - Internal vehicle information, relative distance and speed, location of the ego-vehicle
 - Implementation of the proposed model in the embedded system

HANYANG UNIVERSITY Copyright @ ACE Lab, All rights reserved

Methodology

Long short-term memory based recurrent neural networks

LSTM based RNNs*

ACE Lah

control hub

- Strong prediction performance for sequential data due to feedback loop in RNNs
 - Temporal correlations in determination of the vehicle speed
- Effective conveyance of previous information of the inputs
 - Using cell states

 i_t : input gate, f_t : forget gate, o_t : output gate, h_t : hidden state, C_t : cell state, \tilde{C}_t : candiate cell state, σ : activation function, W: weight, b: bias, x: input state

*S. Hochreiter and J. Urgen Schmidhuber, "Long Short-Term Memory," Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

Vehicle speed prediction model

Model specification

- Model structure
 - 2 LSTM layers + a fully connected layer
- Prediction horizon

ACE Lab

control hub

- *T*_{out}: 15 seconds
- Length of input states
 - T_{in}: 30 seconds
- Prediction every second

Time [s]

Data acquisition environment

Modeling data

control hub

- Training dataset: 34 cycles
- Validation dataset: 6 cycles
- Test dataset: 6 cycles

Master's thesis

Results and analysis

Processor in-the loop simulation (PILS)

Verification of real-time performance

- Integration to embedded system
- Nvidia Jetson TX2

ACE Lab

control hub

- GPU: 256 CUDA cores @ 1300MHz

control hub

Evaluation of the proposed model along the prediction horizon

Curvilinear coordinate conversion (II)

Calculation of the closest point using a numerical technique that combines quadratic minimization and Newton's method

- Prevents divergence of the optimization and improves the rate of convergence for real-time implementation
- Quadratic Minimization

$$- s_0^*[k] = \frac{1}{2} \cdot \frac{b_{23}D(s_1) + b_{31}D(s_2) + b_{12}D(s_3)}{b_{23}D(s_1) + b_{31}D(s_2) + b_{12}D(s_3)}, \quad k = 1, 2, \dots$$

where

ACE Lab

control hub

$$a_{ij} = s_i - s_j$$
 and $b_{ij} = s_i^2 - s_j^2$

Newton's method

$$- s_0^{k+1} = s_0^k - \frac{D'(s_k^*)}{D''(s_k^*)}, \quad k = 1, 2, ..$$

Master's thesis

Conclusion

Conclusion

- In order to reduce fuel consumption and improve drivability of a vehicle, vehicle speed prediction can be applied in the powertrain control strategies
- An ego-vehicle speed prediction model using LSTM based RNNs was proposed to improve the prediction performance in various driving conditions
 - The proposed model uses several model inputs
 - Internal vehicle sensors, a radar sensor, and the location information of the ego-vehicle
- The proposed model was validated by real-driving data from a vehicle equipped with the radar and RTK-GPS
 - The RMSE of test data was 5.023 km/h
 - The maximum calculation time was 0.073 seconds in the embedded system

Thank you for your attention!

Example of HEVs application

ACE Lab

control hub

Model predictive control in HEVs

Minimize the fuel consumption and deviation of SOC

*C. Sun, X. Hu, S. J. Moura, and F. Sun, "Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles," IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 1197–1204, 2015.

Category of vehicle speed prediction research ³⁾

- Scope
 - Macroscopic: forecasts traffic variables such as traffic density [vehicles/km]
 - Micrbscopic: forecasts individual vehicle speed in specific condition such as car-following
- Methodology
 - Parametric approaches: predicts a vehicle speed with a predetermined model structure
 - Non parametric approaches: predicts a vehicle speed with a not pre-defined model structure

3) E. I. Vlahogianni, J. C. Golias, and M. G. Karlaftis, "Short-term traffic forecasting: Overview of objectives and methods," Transp. Rev., vol. 24, no. 5, pp. 533–557, 2004.

Find best hyperparameter set which can minimize the loss in validation data set

- Objective: $\min_{\mathbf{H}\in R^D}(f(\mathbf{H}))$
- Sampled points: $A_n = \{(H_i, f_i(H_i))\}_{i=1}^n$
- Surrogate model: $S_n(H) = \sum_{i=1}^n \lambda_i \phi(||H H_i||) + p(H)$

Model training

ACE Lab

control hub

Model structure optimization

- Hyperparameter Optimization via Radial basis function and Dynamic coordinate search (HORD)*
 - Search of the best hidden states number for the 1-LSTM layer and 2-LSTM layer

*I. Ilievski, T. Akhtar, J. Feng, and C. A. Shoemaker, "Efficient Hyperparameter Optimization of Deep Learning Algorithms Using Deterministic RBF Surrogates," 2016.

Model of previous studies

control hub

- Constant speed (CS) model
- Constant acceleration (CA) model
- Artificial neural network (2 MLP layers optimized with HORD algorithm)

Effect of the input combinations on the prediction performance

Group of inputs

- Group1: $v(t), a(t), w(t), p_b(t), p_a(t)$
- **Group2**: $r_d(t)$, $r_v(t)$
- Group3: s(t)

Scenarios

ACE Lab

control hub

- Scenario I: Car-following
- Scenario II: On the sharp curve
- Scenario III: Full path

Prediction result (RMSE [km/h])

Inputs	Scenario I	Scenario II	Scenario III
G1	5.802	9.497	6.183
G1+G2	5.394	7.505	5.546
G1+G3	5.703	6.168	5.416
G1+G2+G3	4.843	6.923	5.023

G1+G2

G1+G3

G1

G1+G2+G3

HEVs application

ACE Lah

control hub

- J. Lian *et al.*, "A mixed logical dynamical-model predictive control (MLD-MPC) energy management control strategy for plug-in hybrid electric vehicles (PHEVs)," *Energies*, vol. 10, no. 1, 2017.
- A. Rezaei and J. B. Burl, "Effects of time horizon on Model Predictive Control for Hybrid Electric Vehicles," IFAC-PapersOnLine, vol. 28, no. 15, pp. 252–256, 2015.

Cooperative adaptive cruise control

D. Lang, R. Schmied, and L. Del Re, "Prediction of Preceding Driver Behavior for Fuel Efficient Cooperative Adaptive Cruise Control," SAE Int. J. Engines, vol. 7, no. 1, pp. 2014-01–0298, 2014.

Table 2. Comparison of potential consumption reduction.

		prediction horizon			
margin	applied scenario	10s	15s	20s	25s
10m	perfect pred.	8.2%	8.5%	8.5%	8.6%
	Scenario 1	6.9%	7.1%	7.1%	6.9%
	Scenario 2	5.5%	5.7%	5.6%	5.3%
20m	perfect pred.	12.5%	14.3%	15%	15.1%
	Scenario 1	8.6%	11.1%	11.3%	10.5%
	Scenario 2	4.8%	7.2%	8%	6.8%
30m	perfect pred.	15.3%	19.4%	19.5%	19.8%
	Scenario 1	10.1%	14.5%	13.7%	13.1%
	Scenario 2	7%	11.5%	11.8%	10.4%

ACC application

Recurrent Neural Networks

Standard RNN structure (I)

- Difference with the standard neural networks
 - Using previous information when determining the current state

Standard RNN structure (II)

Structure of standard RNN cell: tanh layer

Master's thesis

- Vanishing gradient problem
 - Standard RNN model easily forgets memory from long time ago because of backpropagation
 - One of the solutions prevents the vanishing gradient problem is LSTM

HANYAN

Copyright @ ACE Lab, All rights reserved

The core idea behind LSTM (Long Short Term Memory network)

- To relieve the vanishing gradient problem, LSTM uses cell state and gate(sigmoid function)
- Cell state is a conveyor belt carrying information.
- Gates(sigmoid function) determine to remove or add information to the cell state
 - Output of sigmoid function is from 0 to 1. It is used as gate (0: let nothing through, 1: let everything through)

Copyright @ ACE Lab, All rights reserved

Long short term memory networks (II)

LSTM process

ACE Lab

control hub

- Forget gate(f_t) decides whether to keep old cell state(C_{t-1}) or not
- lnput gate(i_t) determines how much candidate cell state(\tilde{C}_t) is added to new cell state(C_t)
- Output gate(o_t) is multiplied by the cell state, allowing us to get output as we want

30

Design the roadway model by using the B-spline*

Gradual correction

control hub

- Repeated steps for B-spline creation and error correction

Curvilinear coordinate system*

- Quadratic minimization
 - Initial guess of the P_0 by minimizing the distance between P_t and P_0
- Newton's method
 - Finding the final solution

HANYANG UN

Copyright @ ACE Lab, All rights reserved

* J. Kim, K. Jo, W. Lim, M. Lee, and M. Sunwoo, "Curvilinear-coordinate-based object and situation assessment for highly automated vehicles," IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3, pp. 1559–1575, 2015

HANYANG UNIVERSITY

Copyright @ ACE Lab, All rights reserved

ACE Lab