Kyuhwan Yeon

⊠ kyuhwanyeon@gmail.com 🗹 🔗 https://kyuhwanyeon.github.io 🗹 in LinkedIn 🗹 🗘 GitHub 🗹

 $\boldsymbol{\mathscr{S}}$ Google Scholar $\boldsymbol{\boldsymbol{\trianglerighteq}}$

Research Interests

Robotics, Machine Learning, Autonomous Driving, Motion Planning & Control, Prediction, Optimization

Education

Hanyang University, Seoul

M.S. in Automotive Electronics and Control Engineering

- GPA: 4.0/4.0
- Full Scholarship Recipient
- Research Topic: Machine Learning-based Speed Prediction, Intelligent Driver Model for Automated Vehicles
- Teaching Assistant: Microprocessor Applications, Embedded System (Undergraduate & Graduate Courses)

Hanyang University, Seoul B.S. in Automotive Engineering

- GPA: 3.51/4.0
- Full Scholarship Recipient
- $\circ\,$ Note: Military Service from March 2012 to March 2014

Publications

- K. Yeon, H. Kim, and S. -G. Jeong, "SpeedFormer: Learning Speed Profiles with Upper and Lower Boundary Constraints Based on Transformer," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023. - Conference
- [2] S. Moon, S. Lee, H. Woo, K. Yeon, H. Kim, S. -G Jeong, J. Kim, "RUFI: Reducing Uncertainty in behavior prediction with Future Information", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR Workshops), 2023. - Workshop
- [3] J. Shin, K. Yeon, S. Kim, M. Sunwoo and M. Han, "Comparative Study of Markov Chain With Recurrent Neural Network for Short Term Velocity Prediction Implemented on an Embedded System," in IEEE Access, 2021 - Journal
- [4] K.Min, K. Yeon, Y.Jo, Vehicle Deceleration Prediction Based on Deep Neural Network at Braking Conditions. International Journal of Automotive Technology, 2020 - Journal
- [5] K. Yeon, K.Min, J.Shin, Ego-Vehicle Speed Prediction Using a Long Short-Term Memory Based Recurrent Neural Network. International Journal of Automotive Technology, 2019 - Journal, 90 times cited

Experience

Motion Planning Engineer

42dot (Hyundai Motor Group's subsidiary)

- AD/ADAS for production cars (Aug 2023 Present): Developed Level 2+/3 autonomous driving algorithms for mass-production vehicles.
 - Designed a neural motion planner for optimized trajectory generation in real-time.
 - Built high-accuracy motion prediction models comparable to Waymo/Argoverse2 leaderboards.
 - Created scalable continuous learning pipelines for motion prediction.
 - Developed advanced lane-change algorithms using data-driven approaches.
- Robo-shuttle (May 2022 − Sep 2023): Launched an autonomous shuttle service in crowded urban areas. Video
 - Built agent-centric motion prediction models for urban environments.
 - Developed an NPU/GPU-based inference engine for motion prediction networks.

Seoul, Korea Apr 2020 – Present

Mar 2017 - Feb 2019

Mar 2011 – Feb 2017

- - Kyuhwan Yeon Page 2 of 2

- Designed custom annotation tools for motion prediction.
- o Robo-taxi (Apr 2020 − Jul 2022): Contributed to the deployment of a top-ranked autonomous taxi service in Korea. Video Z
 - Designed Level 4 motion planning algorithms using MPC frameworks.
 - Implemented multi-target speed planning and vision-based EKF localization.

Research Engineer

Hyundai Motor Company

• Developed deep learning-based cylinder air charge estimation algorithms for internal combustion engines.

Intern

GNS America

• International internship program

Key Projects

Motion Prediction

- Developed scene-centric, agent-centric, and goal-based motion prediction models
- $\circ~$ Guranatee real-time performance with high accuracy in embedded systems (NPU / GPU)
- $\circ~$ One of the results was presented in the 2023 CVPR workshop.

Neural Motion Planner

- $\circ\,$ Developed a novel Transformer-based network for motion planning, and published in IROS 2023
- $\circ~$ Capable of generating 1,024 optimized trajectory candidates within 30ms in urban scenarios, significantly increasing the probability of finding optimal trajectories while successfully imitating MPC (Model Predictive Control) results. Video \swarrow

Ego-Vehicle Speed Prediction

- Developed a Long Short-Term Memory (LSTM) based Recurrent Neural Network for ego-vehicle speed prediction.
- $\circ\,$ Successfully implemented on an embedded system for a real vehicle test. Video $\swarrow\,$

Awards and Activities

- Hyundai Motor Group Industry-Academia Scholarship (2017-2019): Awarded for participation in a cooperative industry-academic research program.
- Chungbuk Talent Development Foundation Scholarship (2016): Awarded by the local government to students in the top 1% based on CSAT scores.
- Entrance Academic Excellence Scholarship (2011-2016, Hanyang University): Granted for outstanding academic performance throughout the undergraduate program.
- Reviewer: International Conference on Intelligent Robots and Systems (IROS 2023, IROS 2024).
- Speaker: Hyundai Motor Group Developer Conference 2024 on Neural Planner.

Skills

Programming Languages: C++ (production-level), Python (production-level), CUDA
Frameworks and Libraries: PyTorch, MLflow, TensorRT
Simulation Platforms: Applied Intuition, CARLA, MORAI
Systems: NVIDIA platforms, Qualcomm, Hailo
OS: Linux
Robotics: ROS, ROS2
Optimization Solvers: ACADO/ACADOS, CVXGEN, IPOPT

ombustion engines.

Jan 2019 - Apr 2020

Hwaseong, Korea

Michigan, USA Jul 2015 – Dec 2015

2022 - Present

2022 - 2023

2019 - 2021