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ABSTRACTFor predictive powertrain control, accurate prediction of vehicle speed is required. As vehicle speed prediction

is affected by the driver’s response to numerous driving conditions under uncertainty, the development of an accurate model

is quite challenging. This paper proposes an ego-vehicle speed prediction model using a long short-term memory (LSTM)

based recurrent neural network (RNN). The proposed model uses various inputs to increase the prediction accuracy: internal

vehicle information, relative speed and distance to the vehicle ahead measured by a radar sensor, and the ego-vehicle location

estimated by the GPS signal and B-spline roadway model. The LSTM based RNN model predicts the ego-vehicle speed for

15 seconds by using inputs from the past 30 seconds. The model was evaluated by real driving data for three scenarios: car-

following, sharp curve road, and full path. In all scenarios, the radar sensor and the information of the location of the ego-

vehicle contribute to improvement of the speed prediction accuracy. Thus, we conclude that for application of the predictive

powertrain control, besides the internal vehicle information, the radar sensor, and the location of the ego-vehicle information

are critical inputs to the speed prediction model.

KEY WORDS : Vehicle speed prediction, Recurrent neural network, Long short-term memory, Predictive powertrain control

NOMENCLATURE 

xt : input state
ht : hidden state
ot : output state
W : weight matrix
b : bias matrix
it : input gate
ft : forget gate
ot : output gate
Ct : cell state

: candidate cell state
 : activation function
v : average speed of 4 wheels, km/h
a : longitudinal acceleration, m/s2

w : engine speed, rpm
pb : master cylinder pressure, bar
pa : accel pedal position, %
rd : relative distance between ego-vehicle and front

vehicle, m
rv : relative velocity between ego-vehicle and front

vehicle, km/h
s : ego-vehicle location on the driving route
G1 : input group 1
G2 : input group 2

G3 : input group 3
X : input states of the model
Y : output states of the model

SUBSCRIPTS

i : subscript for input layer
h : subscript for hidden layer
o : subscript for output layer
ig : subscript for input gate
fg : subscript for forget gate
og : subscript for output gate
c : subscript for cell state

1. INTRODUCTION

To reduce fuel consumption and satisfy stringent emission
regulations, research on optimization of powertrain control
strategies using the predicted state of the vehicle is a
current focus of research. In the case of energy
management strategy for hybrid electric vehicle (HEV),
predicted ego-vehicle speed profiles can be used to reduce
fuel consumption (Sun et al., 2015b; Lian et al., 2017). For
gearshift strategies in a driving assistance system or HEV,
speed prediction can also be applied to the improvement of
the fuel economy (Müller et al., 2004; Ngo et al., 2011).
Furthermore, predicted vehicle speed profiles can optimize

C̃ t
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cooperative adaptive cruise control (Stanger and del Re,
2013).

However, prediction of vehicle speed is difficult because
it is affected by the driver’s behavior in various driving
environments. Route based events such as the speed limit,
road width, and road curvature affect how a given driver
will react (Odhams and Cole, 2004; Michael et al., 2016;
Serna and Ruichek, 2017). Another important factor
affecting vehicle speed is the movement of the vehicle
ahead (Jurecki et al., 2017). But most of all, a driver’s
speed choice can vary even at the same location, which
makes it even more difficult to predict the vehicle speed
(Berry and Belmont, 1951). 

Therefore, many studies have been conducted to solve
complex and uncertain vehicle speed prediction problems
(Vlahogianni et al., 2004, 2014; Sun et al., 2015a; Jiang
and Fei, 2017). To date, this work has been concentrated in
the field of civil engineering in order to establish a traffic
management strategy (Vlahogianni et al., 2004, 2014). The
work can be categorized by the scope and the methodology,
as shown in Figure 1. In terms of the scope, there are two
modeling approaches of vehicle speed prediction: the
macroscopic model and the microscopic model (Bellemans
et al., 2002). The macroscopic model forecasts traffic
variables such as traffic density [vehicles/km], traffic flow
[vehicles/hour], and average speed on the road. On the
other hand, the microscopic model handles individual
vehicle speed based on driver-behaviors (Panwai and Dia,
2007; Liu et al., 2011). In terms of the methodology, the
vehicle speed prediction can be classified into two types:
the parametric approach and the non-parametric approach
(Lefèvre et al., 2014; Ma et al., 2015). The parametric
approach predicts vehicle speed with a predetermined
model structure based on the theoretical background. This
approach uses parametric models such as the constant
speed (CS) model, constant acceleration (CA) model, and
intelligent driver model (Lefèvre et al., 2014). In the non-
parametric model, the model structure and parameters are
not pre-defined but are determined from the data. The non-
parametric model has been studied in many papers such as
the autoregressive integrated moving average model,
gaussian mixture regression, and various neural networks
based approaches (Ye et al., 2010; Park et al., 2011;
Lefèvre et al., 2014).

However, in order to use predicted vehicle speed for the
powertrain control rather than traffic management, A
microscopic approach is preferable rather than a
macroscopic approach since powertrain control is
implemented in the microcontroller of the individual
vehicle. Furthermore, the prediction accuracy must be
guaranteed. This is because the accuracy of prediction
affects predictive powertrain control performance (Sun et

al., 2015a; Zhang et al., 2017). In addition, the prediction
accuracy should be guaranteed not only in car-following
conditions but also all driving environments because
powertrain control is used regardless of specific conditions

such as car-following.
Recent studies show that non-parametric models have

shown better accuracy than parametric models
(Vlahogianni et al., 2004; Sun et al., 2015a). In particular,
neural networks showed the best prediction result
(Vlahogianni et al., 2004). Because the vehicle speed
prediction is a complex non-linear problem, neural
networks are a more effective platform for the model with
non-linearity and are capable of learning the association of
multivariate inputs and output patterns (Vlahogianni et al.,
2004; Park et al., 2011; Guo et al., 2017).

One type of neural network approach uses an artificial
neural network (ANN) to predict the vehicle speed with a
10 second prediction horizon (Lefèvre et al., 2014).
Furthermore, recently, LSTM based RNNs, have drawn
attention for the vehicle speed prediction (Ma et al., 2015;
Morton et al., 2017). This is because LSTM based RNNs
are known to improve the vanishing and exploding
gradient problems (Gers et al., 2000). Ma et al. (2015)
established a traffic speed prediction model based on a
RNN with LSTM by using two microwave sensors on the
road. This work predicts the traffic speed rather than an
individual vehicle speed. Morten et al. designed a car-
following model based on a RNN with LSTM to predict
acceleration on highways. This study predicts the speed of
individual vehicles only under a specific car-following
condition. 

Considering the studies above, these models assumed a
specific driving condition. This is a clear limitation because
individual vehicle speed must be accurately predicted
under the various driving conditions to apply for the
predictive powertrain control. To do this, not only internal
vehicle data but also the relative speed and the distance
with the vehicle ahead, as well as the location information
of the ego-vehicle must be included in the inputs to reflect
the various driving conditions.

In this paper, we propose an ego-vehicle speed
prediction model using an LSTM based RNN as a
microscopic and non-parametric approach to apply the
various urban driving condition. Compared to previous
work, our approach is not limited to car-following
situations. The proposed model estimates the vehicle
velocity up to a prediction horizon of 15 sec under driving
conditions such as a car-following, sharp curve road and a

Figure 1. Category of vehicle speed prediction.
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full path combined with both conditions. To achieve this
goal, the proposed model uses diverse inputs including the
internal information of the ego-vehicle, the relative speed
and the distance with the vehicle ahead, and the location
information of the ego-vehicle. The prediction
performance of the proposed model was compared to CS,
CA, ANN. The proposed model was evaluated with real
driving data. The influence of the inputs on the prediction
accuracy was analyzed as well. 

The rest of this study is organized as follows. Section 2
introduces the proposed model configuration. The method
of obtaining the driving data and the driving environment
are described in Section 3. The prediction results of the
proposed model are analyzed in Section 4. Finally, the
conclusion is presented at the end of this paper.

2. METHODOLOGY

2.1. Recurrent Neural Network 
The RNN has strong prediction performance for sequential
data (Lipton et al., 2015). Research that applies the RNN to
sequential data such as time series prediction, speech
recognition, and natural language is found in a number of
fields (Graves et al., 2013; Tran et al., 2016; Selvin et al.,
2017). The RNN is structured to have a feedback loop
unlike a standard feedforward neural network, as shown in
Figure 2. Figure 3 shows the unfolded structure of a
recurrent neural network. This architecture clearly
illustrates that the RNN uses an input sequence to obtain an
output sequence. The RNN architecture can be described
by these equations:

(1)

 (2)

where xt, ht, and ot stand for the input state, hidden state,
and output state. Wih is weight matrix between input layer
and hidden layer, and Whh is weight matrix between hidden
layers (ht1 and ht). The weight matrix between the hidden
layer and the output layer is represented by Who . bh and bo

denote the bias vector to the hidden and output layer,
respectively. h and o stand for the activation function of

the hidden layer and output layer. Equation (1) shows that
the hidden state is updated by input xt and the previous
hidden state, ht1. Equation (2) shows the output yt updated
by the hidden state, ht.

Although the RNN enables discovery of the temporal
correlations between events, they have vanishing and
exploding gradient problems (Pascanu et al., 2012).
Because of these problems, the range of the input sequence
should be limited. In other words, it is incapable of learning
from long-term dependencies. To avoid the aforementioned
disadvantages of the RNN, LSTM cell is used in this study.

2.2. LSTM Based RNN
The first study of an LSTM based RNN structure was
introduced by Hochreiter and Schmidhuber (1997). A more
current structure of LSTM is defined by Gers et al. (2000).
The only difference between the traditional RNN and
LSTM architecture is the hidden layer. The hidden layer of
an LSTM based RNN is composed of LSTM cells. Figure
4 shows the structure of the LSTM cell. The cell can be
summarized by input gate it, forget gate ft, output gate ot,
cell state Ct, and hidden state ht. These gates and states can
be expressed by the following equations:

(3)

 (4)

(5)

(6)

Ct = ft⊙Ct1 + it⊙  (7)

ht = ot⊙tanh(Ct)  (8)

where Wig, big are weights, bias of input gate, Wfg, bfg are
weights, bias of forget gate, Wog, bog are weights, bias of
output gate, Wc, bc are weights, bias of cell state,  is the
candidate cell state,  denotes activation function, ⊙

represents the scalar product of the two vectors. The core
ideas of LSTM are the gates and the cell state. Regarding
(7), the input gate determines how much of the candidate
cell state is added to the new cell state, and the forget gate
decides whether to keep the old cell state or not. The
LSTM allows for addition or removal of information to the
cell state owing to these gates. Through this process, the
LSTM can handle the vanishing and exploding gradients
because the cell state can effectively convey the

ht = h Wihxt Whhht 1– bh+ + 

yt = 0 Whoht bo+ 
it =  Wig ht 1– , xt  + big 

 ft =  Wfg ht 1– , xt  + bfg 

ot =  Wog ht 1– , xt  + bog 

C̃t = tanh Wc ht 1– , xt  + bc 

C̃ t

C̃ t

Figure 2. Standard neural network and recurrent neural
network.

Figure 3. Unfolded structure of a recurrent neural network.
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information from the previous hidden and input states. Last
output gate allows us to obtain the final result of the LSTM
model. 

2.3. Model Structure 
We designed the ego-vehicle speed prediction model using
an LSTM based RNN. Figure 5 shows the structure of the
proposed model for ego-vehicle speed prediction. Input
states at time t, x(t), is composed of combinations of three
input groups which will be described in detail in the next
section. X(t), final input states for the model, consists of a
trace of x(t). In this study the duration of the inputs, Tin, was
set to 30 seconds. Model output, Y(t), is a trace of predicted
vehicle speed. The prediction horizon, Tout, is set to 15
seconds. Literature survey tells us that 15 seconds is
enough to handle the energy management strategy of

various applications (Lang et al., 2014; Rezaei and Burl,
2015a).

Our goal in training the neural networks is finding the
best weights and bias, which minimize the loss function. In
this study, the root mean square error (RMSE) was used as
the loss function. To find the best weights and bias, the
back-propagation method is employed (Rumelhart et al.,
1986). Furthermore, to efficiently find the optimal number
of hidden states for each LSTM layer, hyperparameter
optimization via radial basis function and dynamic
coordinate search (HORD) was used (Ilievski et al., 2016).
The objective of HORD is finding the best hyperparameter
set, which can minimize the loss in the validation data set.
The HORD algorithm changes the hyperparameters until it
reaches the maximum HORD iteration number and finds
the minimum validation loss. Using this algorithm, we
were able to find the optimal hidden states number, which
has minimum loss in the validation data.

2.4. Description of Input Groups to the Model
One of the important issues in designing a vehicle speed
prediction model is selection of the input. In this paper,
various inputs are used to improve the prediction
performance. 

Input list
① v: Average speed of 4 wheels
② a: Acceleration
③ w: Engine speed
④ Pb: Master cylinder pressure
⑤ Pa: Accel pedal position
⑥ rd: Relative distance between the ego-vehicle and the

front vehicle
⑦ rd: Relative speed between the ego-vehicle and the front

vehicle
⑧ s: Ego-vehicle location in the driving route

Input states of the model in time domain, X(t), can be
written as

G1 = {v(t), a(t), w(t), pb(t), pa(t)} (9)

G2 = {rd(t), rv(t)}  (10)

G3 = {s(t)} (11)

x(t) = {G1, G2, G3} (12)

X(t) = [x(t), x(t1), ... x(tTin)] (13)

Model output state, Y(t), can be described as:

Y(t) = [v(t + 1), v(t + 2), ... v(t + Tout)] (14)

As briefly mentioned in the earlier section, x(t), input
states at the time, is composed of combinations of input
groups, specifically Group 1, Group 2, and Group 3. Group
1 represents the internal vehicle information obtained from
the on-board sensors in the vehicle. Inputs from G1 are
related to represent vehicle speed and indicate the driver’s

Figure 4. Architecture of LSTM. The circles are arithmetic
operators, and the white boxes are the gates of LSTM.

Figure 5. Structure of the proposed speed prediction
model. X(t) is the input states of the model, and Y(t) is
output states of the model.
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intent to the vehicle speed. Group 2 contains inputs related
to the influence of the vehicle ahead. The speed of a car is
dominantly influenced by the speed of the front car in car-
following situations research (Blanch Micó et al., 2017;
Jurecki et al., 2017). Owing to this fact, the distance and
speed from the front vehicle were used as inputs through
measured signals from the radar sensor. Group 3 is an input
related to the route-based events that affects the vehicle
speed. The driver’s responses to the environment of the
driving route, such as the width of the road, the curvature
of roads, the speed limit, and the speed bump are important
factors affecting the vehicle speed (Müller et al., 2004;
Keulen et al., 2009; Rezaei and Burl, 2015b; Michael et al.,
2016; Lim et al., 2017). However, these events are difficult
to be integrated into the inputs because these are hard to
calculate arithmetically, and their boundaries are
ambiguous. To avoid this problem, the location of the ego-
vehicle in the route was used because the driver's response
to route-based events takes place based on the location.
Based on this fact, we select the location information as
one of the inputs, G3.

3. REAL DRIVING ENVIRONMENT

3.1. Driving Environment
The 5.1 km driving route includes urban roads and a
narrow one-way road in Seoul, Korea. Figure 6 shows the
top view of the driving route. The dotted blue line is the
narrow one-way road, the black line is the urban road, and
the green circle is the location of the sharp curve. Figure 7
shows the vehicle speed profiles on the route, indicating
that the speed profiles are affected by the location of the
ego-vehicle on the driving route, especially on the curve
and narrow road. On the narrow one-way road, low speed
is observed because the width of the lane is so narrow. The
curvature on the driving route is shown in Figure 8. The
black line has a normal curvature, and two green peaks on
the graph represent the sharp curve on the road. On the
sharp curve, the speed is reduced because the driver cannot
withstand lateral acceleration from the curve, as shown in
Figure 7.

We drove this route 46 times. The driving data was
divided into three parts. 34 laps were for the model training

and 6 laps for the validation used in hyperparameter
optimization. The remained 6 laps were for the test of the
model and its performance evaluation.

3.2. Data Acquisition
To log the data for the modeling, a Kia Sorento equipped
with radar and RTK-GPS (Real time kinematic global
positioning system) was used. Table 1 describes the
specification of the radar sensor, and Table 2 shows the
RTK-GPS. Figure 9 contains the vehicle environment for
data logging. By using the VN 1640 (Vector), in-vehicle

Figure 6. Top view of the driving route.

Figure 7. Vehicle speed profiles on the driving route.

Figure 8. Curvature of the driving route.

Table 1. Specification of the radar.

Maximum range 150 m

FOV +/ 10 degrees over 60 m
+/ 45 degrees under 60 m

Update rate 50 milliseconds

Table 2. Specification of the RTK-GPS.

Accuracy (Root mean square) 2 cm

Update rate 20 milliseconds
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information could be acquired through a CAN network.
Vehicle speed and acceleration were obtained through
wheel sensors and a gyro sensor, and the engine speed was
transmitted from the engine control unit signal. The relative
speed and distance to the preceding vehicle were
recognized through a radar sensor. In the case of the ego-
vehicle location on the driving route, an extra process to get
the information was needed. It requires a roadway model
that can represent the driving route and a proper coordinate
system to indicate the location of the vehicle effectively.
For this purpose, the B-spline road model (Jo and Sunwoo,
2013; Jo et al., 2017) and the curvilinear coordinate system
(Wang et al., 2002) were utilized.

4. RESULT AND ANALYSIS 

The performance of the vehicle speed prediction was
evaluated for the six driving tests. In order to evaluate the
performance of prediction model, R-squared (R2) and
RMSE were employed. Both R2 and RMSE were used in
this study as an indicator of the model prediction accuracy.
R2 and RMSE were formulated as the following equations:

 (15)

 (16)

RMSE =  (17)

where  is the mean of the measured speed, yt is the
measured speed,  is the predicted speed, and N is the
number of elements in output.

The result of the model optimization process is
described in 4.1. Comparison results with existing models

are shown in 4.2. The proposed vehicle speed model using
all inputs is evaluated in 4.3. The influence of the input
combinations on prediction is analyzed in 4.4.

4.1. Model Structure Optimization Process
The number of LSTM layers was fixed by 2. The optimal
number of hidden states for each layer was found by the
HORD algorithm. Table 3 shows the range of the
hyperparameters to be optimized. We executed HORD
algorithms with three trials within the iteration number of
100. The result is shown in Figure 10 and summarized in
Table 4. As shown in Figure 10, the best hyperparameters
were observed in Trial 2, iteration 77. The number of best
hidden states was 230, 310 for each LSTM layers. Figure
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Figure 9. Data logging environment.

Table 4. Summary of the hyperparameter optimization.

Index
Best 

iteration 
number

H1 H2
Average RMSE 

in validation data 
(km/h)

Trial 1 30 218 125 4.849

Trial 2 77 230 310 4.753

Trial 3 76 270 270 4.796

*The number of hidden states for 1-LSTM layer is H1, and
the number of hidden states for 2-LSTM layer is H2

Figure 10. Result of the hyperparameter optimization by
HORD algorithm.

Table 3. Range of the hyperparameters to be optimized.

Hyperparameters Range

H1 [1, 321]

H2 [1, 321]

*The number of hidden states for 1-LSTM layer is H1, and
the number of hidden states for 2-LSTM layer is H2
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11 shows the training result when the best hidden state
numbers were applied. The average RMSE was 4.995 km/
h in training data and 4.753 km/h in validation data. In this
way, we optimized the hyperparameters through the HORD
algorithm and predicted the speed by using this model.

4.2. Comparison of the Speed Prediction Models
Because accurate prediction is a mandate for predictive
powertrain control, the proposed model was compared with
CS, CA, ANN. The CS and CA belong to the parametric
approach, while the ANN and the proposed model belong
to the non-parametric approaches. The CS model assumes
that the velocity of the ego-vehicle is constant. The CA
model assumes that the ego-vehicle keeps the acceleration
constant for the prediction horizon of 15 sec. These two
models have been used to compute the time-to-collision
and applied to vehicle tracking application when there is no
information about other vehicles (Lefèvre et al., 2014). The
ANN consists of two hidden layers and one output layer,
which is the same structure as the proposed model. The
optimal hyperparameters of the ANN were obtained
through HORD optimization. 

The performance of the proposed model was compared
with the CA, CS, ANN as shown in Figure 12. The non-
parametric approaches show more accurate prediction
performance than the parametric approaches regarding R2

and RMSE as expected. The parametric methods cannot
consider various driving environments because their input
was only the velocity or acceleration.

On the other hand, the non-parametric methods utilize
radar sensor, location information, and internal vehicle
sensors. For the non-parametric methods, the proposed
model shows more accurate than the ANN. The average
RMSE of the proposed model along the prediction horizon
was 4.797 km/h compared to that of the ANN at 7.012 km/
h. This comes from the vehicle speed of the proposed
model is determined by not only the current information

but also the continuous sequential driving information from
the past. However, the ANN only utilizes the current
information. Therefore, we chose the proposed model to
predict the vehicle speed in this study.

4.3. Evaluation of the Proposed Model
In this section, we evaluate the proposed model in terms of
R2, RMSE. The prediction results of the proposed model
for the 6 driving tests are shown in Figure 13. The length of
the input states was 30 seconds. Thus, the first prediction
takes place after 30 seconds as shown in Figure 13 (a). The
black dotted line is the actual speed of the ego-vehicle, and
the red lines are the predicted vehicle speed profiles. The
red colored prediction profile is generated at present, and it
predicts vehicle speed with a 15 second prediction horizon.
In order to show the result more clearly, Figure 13 (b)
shows the prediction result at 46 seconds of Test 2 in
detailed view. For evaluation of the prediction, the R2 and
RMSE were calculated for the 6 driving tests. In addition,
the average results of R2 and RMSE for all the six driving
tests were determined as shown in Table 5. The average R2

in the six driving tests was 0.897, and the average RMSE
was 5.023 km/h. The maximum RMSE was 5.820 km/h,
and the minimum was 4.030 km/h. The standard deviation
of the R2 was 0.0156 and that of the RMSE of 0.6356 km/
h between the result from Test 1 to Test 6.

4.4. Effect of the Input Combinations on the Prediction
Performance
As a reminder, G1 is the input group of the internal vehicle
information from the on-board sensors, G2 includes the
relative speed and distance from the radar sensor, and G3 is

Figure 11. Result of best training at Trial 2, iteration 77.

Figure 12. Comparison results with CS, CA, ANN along
the prediction horizon.
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the location of the ego-vehicle from the RTK-GPS. To
investigate the influence of these input groups on the
prediction results, the driving data was divided into three
specific scenarios. 

Scenario I: Car-following
Scenario II: On the sharp curve
Scenario III: Full path

Scenario I was classified using the radar sensor of the
vehicle. This is the section where the relative distance from
the front vehicle to the self-vehicle is less than 140 m.
Scenario II is a sharp curve. The sharp curve is a corner that
has a maximum curvature of 0.02 or more. It is illustrated
in Figure 8. Scenario III is the full path of the driving route.
Figure 14 shows the results of predictions according to

Figure 13. (a) Prediction results of the proposed model;
(b) Detailed view of the prediction result at the certain
moment.

Table 5. R2 and RMSE in the test set.

Index R2 (-) RMSE (km/h)

Test 1 0.917 4.572

Test 2 0.918 4.030

Test 3 0.894 5.820

Test 4 0.885 4.725

Test 5 0.895 5.334

Test 6 0.875 5.660

Average 0.897 5.023

Standard deviation 0.0156 0.6356

Figure 14. R2 and RMSE according to input combinations.
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three scenarios. In scenario I, which is affected by the
vehicle ahead, the prediction accuracy was improved when
G2 was included as inputs. It shows that input from the
radar sensor could improve R2 by 1.6 % and RMSE by 7.0
% in the car-following scenario. For scenario II, the input
combination of G1 and G3 provided the best prediction
accuracy. It improved R2 by 55.9 % and reduced the RMSE
by 35.0 % compared to only G1 used as input. This result
means that the location information of the ego-vehicle
significantly increased the performance of the prediction
on the curve. Lastly, the input combination of G1, G2, and
G3 had the most accurate prediction performance in the
scenario III (full path). R2 was improved by 6.0 % and
RMSE reduced by 18.7 % from the only G1 input.
Considering all the scenarios, the radar sensor and the
information of the location of the ego-vehicle contribute to
improvement of the speed prediction accuracy. Thus, we
conclude that for application of the predictive powertrain
control, the radar sensor and the location of the ego-vehicle
information should be concerned as inputs to the speed
prediction model as well as the internal vehicle
information.

5. CONCLUSION

In this paper, an ego-vehicle speed prediction model using
an LSTM based RNN was proposed to improve the
prediction performance in various driving conditions. The
proposed model uses several model inputs: internal vehicle
sensors, a radar sensor, and the location information of the
ego-vehicle. The hyperparameters of the proposed model
were optimized by the HORD algorithm. More detailed
findings are as follows:

The prediction performance of the proposed model was
compared to the CS, CA, and ANN. The comparison
results showed that the proposed model has the most
precise prediction performance. 

The proposed model was validated by real-driving data
from a vehicle equipped with the radar and RTK-GPS. The
driving conditions included car-following, a sharp curve
road, and full path. 

To analyze the impact of the input combinations, the
prediction results of three scenarios were compared. The
radar sensor improves the prediction performance in the
scenario of car-following, and the location of the ego-
vehicle enhances the accuracy of prediction on the sharp
curve. The best prediction performance on the full path was
obtained by using all of the inputs. 
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