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Abstract

Autonomous driving has shown significant progress in
recent years, but accurately predicting the movements of
surrounding traffic agents remains a challenge for ensur-
ing safety. Previous studies have focused on behavior pre-
diction using large-scale data with diverse information like
lane and agent information. However, these studies only
use historical information, leading to uncertainty in pre-
dicting interactions between agents, which can result in col-
lisions or incorrect trajectory predictions. To address this,
we propose a novel method that uses future information dur-
ing training to reduce uncertainty. Our approach leverages
a Teacher-Student technique and attention-based model to
reflect agent interaction. To bridge the gap in future in-
formation between the student and teacher models, we in-
troduce Lane-guided Attention Module(LAM) that predicts
trajectory using only local information in the student model.
Our proposed model achieves state-of-the-art performance
on the Argoverse motion forecasting dataset, demonstrating
that future data, which was previously used only for super-
vision, can be effectively incorporated into the training pro-
cess. This study is the first attempt to use future information
during training for a behavioral prediction task, and pro-
vides a valuable contribution to this field.

1. Introduction
Predicting behavior is a crucial and challenging task for

autonomous vehicles as it involves avoiding collisions with
pedestrians, cyclists, and other vehicles. The complexity
of this task may depend on several critical factors, includ-
ing the need to interact with multiple agents, uncertainty
regarding intentions, and challenges in fusing and utiliz-
ing multimodal information. Plus, fusion and utilization of
multimodal information (such as map data, agent location,
and multiple time steps) also present significant challenges.

Behavior prediction models have been developed based
on large-scale data [4, 8, 12] that provide sufficient infor-

Figure 1. RUFI utilizes future information as direct input data dur-
ing training to effectively capture interactions between the target
agent and other agents. To achieve this, RUFI employs a Teacher
model that directly utilizes the future information of other agents
to perceive interactions, and uses the interaction information of the
Teacher model as a guide to prevent unreasonable trajectories and
collisions in the student model.
mation for driving, such as map, agent poses over mul-
tiple time steps. For instance, vectorized methods have
been utilized to incorporate map information in some stud-
ies [5, 9], while transformer-based methods have been used
to fuse multimodal data [6, 10]. Furthermore, researchers
have explored the interaction modeling between agents [11]
and employed knowledge distillation techniques for be-
havior prediction [1, 3]. These models often produce a
per-agent parametric distribution over multiple trajectories,
where these per-agent trajectories may overlap in space, vi-
olating physical space occupancy constraints.

To optimize multi-agent trajectory uncertainty jointly,
we advocate for utilizing a Teacher-Student learning tech-
nique where we train a Teacher model that takes agents’
future positions as input and learns the interaction infor-
mation between agents, which is then transferred to the
Student model using attention-based knowledge distillation



Figure 2. An overview of our proposed method called RUFI. Our model is built upon a student-teacher learning model where (top) the
teacher model can leverage the ground-truth future observations of other agents while (bottom) the student model cannot use them. The
knowledge is transferred from the teacher model to the student model via attention-based knowledge distillation, i.e., which agents should
be attended to and be interacted with for the final verdict.

techniques [17]. In specific, our proposed model consists of
two steps: (i) Teacher model is trained to predict trajectories
and accurate interaction between agents using other agents’
future positions and local information such as historical in-
formation and map data. (ii) Student model predicts future
trajectories using local information and the more accurately
learned interactions between each agent from the Teacher
model as a guide.

We further introduce Lane-guided Attention Mod-
ule(LAM) to refine each agent’s predicted trajectory by
extracting relevant lanes and assigning confidence using a
confidence calculation equation. The Student model uti-
lizes the refined feature from the LAM to better mimic the
interactions between agents learned by the Teacher model,
which improves trajectory prediction accuracy.

We demonstrate how to use future information during
training and how knowledge distillation techniques using
such information can improve the accuracy of behavior pre-
diction models. We introduce Lane-guided Attention Mod-
ule that effectively utilizes agent features and predicted fu-
ture information to understand interactions and reduce un-
certainty. Our proposed method achieved state-of-the-art
results on the Argoverse [8] challenges.

2. Method

As shown in Figure 2, our model utilizes student-teacher
learning where (i) the teacher model (T ) can leverage other
agents’ ground-truth future trajectories, i.e., a model as an
oracle predicts the target agent’s future poses given other
agents’ past, current, and future poses. This accelerates the
learning process by simplifying agent-wise interactions and

the multi-modality of output space. Given other agents’ fu-
ture poses, a model T is trained to attend to other agents
for the final verdict selectively. Such attentional knowledge
is transferred to (ii) the student model (S) by forcing it to
mimic the teacher model’s attention distributions.

Teacher Network T . Our teacher network T first utilizes
the standard self-attention module to encode agent-agent in-
teractions, yielding the same dimensional latent representa-
tion s′i ∈ Rd. Further, we use another self-attention module
to augment the future trajectory Y i, yielding the agent-wise
latent vector a′i ∈ Rd. Specifically, as shown in Figure 2
(b), we use the following query, key, and value with the
learnable parameters W ′

Q, W ′
K , and W ′

V :

Q′
i = W ′

Qs
′
i, K

′
ij = W ′

Kϕ(s′j +oj), V
′
ij = W ′

V ϕ(s
′
j +oj)

(1)
where ϕ is an MLP layer and oj is the future trajectory. Our
teacher network uses the future trajectory only to generate
attention distributions, preventing the direct use of future
information in predicting the target agent’s future trajectory.

Lane-guided Attention Module (LAM). As shown in Fig-
ure 3, our proposed Lane-guided Attention Module (LAM)
first predicts the future trajectory Ȳ i for each agent i ∈
[1, n] using their respective features as input. Given this, the
lane segments around each agent’s predicted future paths
are extracted, and a corresponding confidence value is as-
signed to each extracted lane segment using the following
equation:

Ciξ =

6∑
k=1

{
Πk, if ∃p̂kt |

∣∣p̂kt − pξ,0
∣∣ < D

0, otherwise
(2)



Figure 3. An overview of Lane-guided Attention Module (LAM),
which predicts future trajectories of agents using their features and
selects lanes within D meters of the predicted trajectories.

where p̂kt represents the position of the i-th agent’s k-th
mode of the t-th step in the predicted path, pξ,0 represents
the starting position of lane ξ, and Πk represents the con-
fidence of the k-th path in the i-th agent’s predicted path.
The lanes to be passed by each agent are obtained within D
meter of the predicted trajectory, and each lane reflects the
confidence of the trajectory. So, we can extract features for
the lane segment related to the i-th agent as follows:

Fiξ = ϕlane

([
RT

i (pξ,1 − pξ,0) , R
T
i

(
pξ,0 − pTc

i

)
, Ciξ, aξ

])
,

(3)
where ϕlane is the MLP layer. We define a 2x2 rotation
matrix for conversion to the central coordinates of the i-th
agent as Ri ∈ R2×2. The starting and ending positions of
lane segment ξ can be represented as pξ,0 ∈ R2 and pξ,1 ∈
R2, respectively. The semantic attributes of lane segment
ξ are denoted as aξ. Then the confidence-weighted lane
features are combined with the agent features using cross-
attention.

Qi = WQFi, Kiξ = WKFiξ, Viξ = WV Fiξ (4)

Student Network S. Similar to our teacher network, our
student network S utilizes the self-attention module to en-
code the agent-wise latent vectors si given lane-augmented
observation features li for i ∈ [1, n]. To reduce the feature
gap between the models’ future information, LAM-based
Self-Attention is used, which uses the output of LAM as
a key instead of the self-attention used by the teacher, as
shown in Fig.2. Therefore, the LAM-based Self-Attention
of the student model uses agents’ features obtained using lo-
cal information of the target agent as query and value, and
uses the predicted future information F̄j as a key like Eq.(5).

Q̃i = WQ̃Fi, K̃ij = WK̃ F̄j , Ṽij = WṼ Fj (5)

Attention-based Knowledge Distillation. To distill the
attention coefficients in the attention module, we employ

Table 1. Ablation experiment to see the effect of two modules.

Method minADE(↓) minFDE(↓) MR(↓)

HiVT [15] 0.6868 1.030 0.1024
Ours 0.6758 1.008 0.0987

Ours (w/o LAM) 0.6830 1.013 0.1005
Ours (w/o distillation) 0.6804 1.014 0.0995

Table 2. Performance comparison on Argoverse leaderboard re-
sult. †reproduced.

Method minADE(↓) minFDE(↓) MR(↓)

THOMAS [13] 0.9423 1.4388 0.1038
DenseTNT [16] 0.8817 1.2815 0.1258
LaneGCN [9] 0.8703 1.3622 0.1620
DSP [7] 0.8194 1.2186 0.1303
HiVT† [15] 0.7995 1.2321 0.1357
Multipath++ [2] 0.7897 1.2144 0.1324

Ours 0.7867 1.2028 0.1319

the knowledge distillation technique used in MINILM [14].
Formally, we use the following distillation loss for attention
coefficients in the last interaction layer of the student and
teacher models:

Ldistill =
1

N

N∑
i=1

DKL (Ai ||Ai) (6)

where N is the number of agents. Ai and Ai are the atten-
tion coefficients of the student model and the teacher model,
respectively.

Loss Function. Our model is trained end-to-end by mini-
mizing the following loss function L:

L = Ltraj + Lconf + Ldistill (7)

where Ltraj is the regression loss and Lconf is the confidence
loss for each trajectory. We provide details in the supple-
mental material.

3. Experiments

Setup. We use the publicly-available Argoverse dataset [8],
which consists of 324,557 scenario samples, each lasting
5 seconds (2 seconds for past observation and 3 for future)
and sampled at a rate of 10Hz, for use in training and valida-
tion. We also use the standard metrics, including minADE,
minFDE, and MR. More details are provided in the supple-
mental material.

Ablation Study. We first perform ablation studies on the
Argoverse validation set using HiVT [15] as the base model.
As reported in Table 1, our model achieved performance im-
provement in all metrics compared to the baseline model.
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Figure 4. Examples of how our model (and base model [15]) reacts
when (A) an agent is moved or (B) removed.
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Figure 5. Examples of trajectory prediction outputs for the base
model (HiVT [15]) and ours.

Furthermore, our two main modules, LAM and distillation
loss, are effective to notably improve the overall perfor-
mance.

Quantitative Analysis. As shown in Table 2, we compared
the performance of our model with other state-of-the-art
(SOTA) models on the validation set and test set used in
the Argoverse motion forecasting task. Our model clearly
outperforms the current SOTA models regarding minADE
and minFDE, which may confirm the effect of leveraging at-
tentional knowledge. In the supplemental material, we fur-
ther provide a more detailed quantitative analysis in terms
of different driving scenarios (e.g., go-straight, right-turn,
and left-turn).

Qualitative Analysis. As shown in Figure 4, we provide
examples where target agent responds to tasks such as agent
movement, addition, and deletion. Scenario A shows how
trajectory changes when an agent’s position changes at the
intersection, while Scenarios B demonstrates how well in-
teractions between agents are predicted and how reasonable

the trajectory changes are when there is an agent that affects
the driving path. Further, in Figure 5, we provide diverse
examples of results of trajectory prediction for various situ-
ations. Our model is able to more accurately capture direc-
tion changes, such as left turns. Further, in scenarios with
many agents (where accurate predictions are challenging),
our model reasonably predicts trajectories, avoiding colli-
sions.

4. Conclusion
Accurately predicting the future movements of surround-

ing traffic agents remains challenging for fully-autonomous
driving. In this paper, we advocate for incorporating fu-
ture positional information during training by leveraging a
Teacher-Student technique and an attention-based knowl-
edge distillation, further reducing trajectory uncertainty.
Also, our proposed Lane-guided Attention Module (LAM)
further help incorporate attention-based distilled knowl-
edge. Our model generally outperforms state-of-the-art
models on the Argoverse dataset, effectively removing un-
certainty and leading to improved interaction predictions.
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1. Related Work

Trajectory prediction. Recently, extensive research has
been introduced for agents’ trajectory prediction. However,
challenges remain, such as (i) dealing with trajectory un-
certainty related to human intentions and (ii) the effective
integration of multimodal data. Notable approaches to re-
solve (i) may include optimizing Gaussian position uncer-
tainty [1, 3, 16] and utilizing CNN (or GNN)-based whole
scene (rasterized or vectorized) representation. To resolve
(ii), transformer-based architectures [6, 9, 17] have been in-
creasingly chosen as the method for fusing multimodal data.
Moreover, as it becomes increasingly important to consider
interactions with other agents or map information for more
accurate predictions, studies have proposed using vector-
ized maps. Some use vectorized maps to model the inter-
action between agents’ historical trajectories and road com-
ponents [5,8,10,14]. Gao et al. [5] uses a hierarchical GNN
to model these interactions, while Sun et al. [10] predicts
the interaction type between agents through distance-based
rules and leverages this feature to model agents’ interaction.
In our study, we omit the process of predicting the interac-
tion type and allow the target agent to identify the interac-
tion by itself using the information of other agents’ future
trajectories in the teacher model.

Knowledge Distillation. Knowledge distillation is a widely
used method in various fields of computer vision and natural
language processing, aimed at transferring knowledge from
high-performing models with a large number of parameters
to smaller models with fewer parameters [13, 15]. In recent
years, knowledge distillation has been extensively studied
and applied in the field of autonomous vehicle application.
For example, Su et al. [4] proposes a model that is not af-
fected by the number of agents through knowledge transfer
from an agent-centric model (teacher) that has high perfor-
mance but increases computational cost geometrically with
the number of agents to a scene-centric model (student).

Monti et al. [2] proposes an approach that exploits only a
few observation inputs to increase predictive performance
and eliminate noise probability in the detection phase. In
this study, we propose a method of transferring the knowl-
edge of a teacher model, which can better understand the
interaction between the target agent and other agents by ref-
erencing the future trajectory of other agents, to a student
model. This approach allows predicting the interactions be-
tween agents based not only on history information but also
on distilled features. And this allows for the efficient use
of computation resources and improves the performance of
the student model.

2. Method Details

Attention-based Knowledge Distillation. The Future-
Aware attention, which adds future features, is used in the
last interaction layer of the teacher model, and the LAM-
based Self-Attention, which enables the student model to
capture approximate future information of other agents, is
used before the last self-attention module to mimic the in-
teraction of the teacher model. To distill the attention coef-
ficients in the attention module, we employ the knowledge
distillation technique used in MINILM [11]. Therefore, we
use the following distillation loss for attention coefficients
in the last interaction layer of the student and teacher mod-
els:

Ldistill =
1

N

N∑
i=1

DKL (Ai ||Ai) (1)

where N is the number of agents. Ai and Ai are the atten-
tion coefficients of the student model and the teacher model,
respectively.

Loss Function. We use the regression loss LLAM for the
trajectory used in LAM and the regression loss Lfinal at
the final output using the negative log likelihood function

1



for the Laplace distribution:

LLAM (pi, p̂i) = Lfinal(pi, p̂i) =
1√
2b2

n∑
i=1

|pi − p̂i| e−
|pi−p̂i|

b

(2)
Ltraj = LLAM + Lfinal (3)

where pi denotes the actual future position of the i-th agent,
p̂i denotes the predicted position of the i-th agent, and b is
the scale parameter. We also compute the loss Lconf for the
confidence of each trajectory using cross entropy. Finally,
we combine the distillation loss, regression loss, and con-
fidence loss to obtain the overall loss function used in our
method.

L = Ltraj + Lconf + Ldistill (4)

3. Experiments

Dataset. The Argoverse dataset [7] is a valuable resource
for training and evaluating behavior prediction models for
autonomous vehicles. It includes 3D tracking data and high-
definition maps from Pittsburgh and Miami in the United
States. The dataset consists of 324,557 scenario samples,
each lasting 5 seconds and sampled at a rate of 10Hz, for
use in training and validation. The motion forecasting task
in the Argoverse dataset involves predicting the future tra-
jectories of agents over a 3-second time horizon, based on
their past trajectories over a 2-second time span. The dataset
provides 205,942 samples for training, 39,272 samples for
validation, and 78,143 samples for testing, making it a com-
prehensive dataset for behavior prediction research in au-
tonomous vehicles.

Metrics. Our model is evaluated using standard metrics for
behavior prediction, which includes minimum Final Dis-
placement Error (minFDE), minimum Average Displace-
ment Error (minADE), and Miss Rate (MR). The minFDE
metric measures the final displacement error between the
ground truth trajectory’s end position and the best predicted
end position from K=6 joint samples. The minADE metric,
on the other hand, measures the average displacement error
between the ground truth trajectory and the best predicted
sample out of K=6 joint samples. The MR refers to the per-
centage of scenarios where the distance between the ground
truth trajectory’s endpoint and the best predicted endpoint
is above diameter threshold.

Additional Quantitative Analysis. To show Quantitative
results. We compare the performance of our model with
other SOTA models in the validation set and test set used in
the Argoverse motion forecasting task. In Table 1, we com-
pared the performance of our model with the base model,
HiVT [12], for different maneuvers such as straight, right
turn, and left turn, as well as for all agents, including the
target agent and other agents that may have missing data.
Our model showed an improvement in performance in all

method Maneuver Target minADE(↓) minFDE(↓) MR(↓)

HiVT [12] (base) All Target agent 0.687 1.030 0.1024

Straight Target agent 0.615 0.857 0.0691

Right-turn Target agent 1.039 1.925 0.2700

Left-turn Target agent 1.045 1.860 0.2674

All All 1.070 2.071 0.3229

Ours All Target agent 0.676 1.008 0.0987
Straight Target agent 0.605 0.839 0.0669

Right-turn Target agent 1.024 1.881 0.2537
Left-turn Target agent 1.029 1.821 0.2581

All All 1.035 1.909 0.3072

Teacher All Target agent 0.627 0.921 0.0891

All All 0.956 1.755 0.2910

Table 1. Performance comparison on Argoverse validation set.
Ours is the performance in the student model, and the performance
of the teacher model is also presented.

situations and for all agents. When compared to the tar-
get agent only, we achieved a performance improvement of
1.35%, 2.25%, and 4.34% in the minADE, minFDE, and
MR metrics, respectively. When compared to all agents,
we achieved a performance improvement of 3.38%, 7.82%,
and 7.96% in the same metrics. These results demonstrate
that RUFI can extract robust results by leveraging interac-
tion information with other agents even with some infor-
mation loss for the agent being predicted. We also repre-
sent performance of the teacher model in Table 1 to demon-
strate the importance of accurately predicting the trajecto-
ries of other agents and predicting the interactions between
the target agent and other agents when predicting the tra-
jectory of the target agent. When using information about
the future trajectories of other agents, excluding the target
agent, our proposed teacher model achieved performance
improvements of 7.24%, 8.63%, and 9.73% compared to
RUFI. Therefore, we can demonstrate the importance of ac-
curate trajectory prediction for other agents and predicting
their interactions with the target agent.

Additional Qualitative Analysis. As a qualitative analysis,
we present visualized results for various scenarios in the Ar-
goverse validation dataset in Figure 1 and Figure 2. While
there were many positive examples, we propose interpreta-
tions for some special cases. Firstly, in Figure 1, we ex-
amine how the target agent responds to tasks such as agent
movement, addition, and deletion. Scenario A shows how
trajectory changes when an agent’s position changes at the
intersection, and Scenarios B and C demonstrate how well
interactions between agents are predicted and how reason-
able the trajectory changes are when there is an agent that
affects the driving path. Secondly, in Figure 2, we show the
results of trajectory prediction for various situations. We
were able to capture direction changes, such as left turns,
more accurately, and in scenarios with many agents where
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Figure 1. Qualitative results of RUFI on the Argoverse validation dataset. We demonstrate how RUFI reflects interactions by changing the
position of other agent in Scenario A and showing how agent trajectories change when agent is removed or added in Scenarios B and C.
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Figure 2. Present the results of RUFI on the Argoverse validation dataset. A and B scenarios demonstrate the model’s ability to capture
direction changes, while C and D scenarios show reasonable and collision-free trajectory predictions in complex situations with many other
agents. E scenario demonstrates that even on straight paths, more accurate predictions are possible through interaction with other agents.

predictions can be difficult, trajectories were predicted more
reasonably, avoiding collisions. In addition, by considering

interactions with other agents who have similar trajectories
even in straightforward sections, we could predict more ac-



curately even in straightforward situations.
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